Sourcecode: Example2.c

Sourcecode: Example2.c

] COLLABORATORS
TITLE :
Sourcecode: Example2.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example2.c iii

Contents

1 Sourcecode: Example2.c 1
L1 Example2.c o e e e e 1

Sourcecode: Example2.c

Chapter 1

Sourcecode: Example2.c

1.1 Example2.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ %

/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC)
J*x —mmm e e
/ *

/* Manual: AmigaDOS Amiga C Club

/+ Chapter: Advanced Routines Tulevagen 22

/+ File: Example2.c 181 41 LIDINGO
/+ Author: Anders Bjerin SWEDEN

/* Date: 93-03-17

/* Version: 1.0

/ *

/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC)

/ *

/* Registered members may use this program freely in their
/ * own commercial/noncommercial programs/articles.

/ %

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

/+ This example does exactly the same thing as the previous one,

/* it simply demonstrates how to use the Examine () function.

/+ However, this example uses the new AllocDosObject () and

/+ FreeDosObject () functions which were introduced in Release 2.
/* You should use these new functions (if possible) instead of
/* using the older method of allocating a fixed amount of memory

/* for the dos object (the FileInfoBlock structure).
/ *

/+ This example can only be used with dos library V37 or higher.

/+ Include the dos library definitions: */
#include <dos/dos.h>

/+* Now we include the necessary function prototype files:

#include <clib/dos_protos.h> /* General dos functions...
#include <stdio.h> /* Std functions [printf()...]

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

Sourcecode: Example2.c 2/5

#include <stdlib.h> /* Std functions [exit()...] */
#include <string.h> /* Std functions [strlen()...] =/

/* Set name and version number: =*/
UBYTE *version = "S$VER: AmigaDOS/Advanced Routines/Example2 1.0";

/+ Declare an external global library pointer to the Dos library: =/
extern struct DosLibrary xDOSBase;

/* Declared our own function(s): =/

/* Our main function: =*/
int main(int argc, char *argv[]);

/+* Main function: =/

int main(int argc, char *argv[])
{
/* "BCPL" pointer to our lock: =*/
BPTR my_lock;

/* Pointer to our FileInfoBlock which we will allocate: =*/
struct FileInfoBlock smy_fib;

/* AmigaDOS boolean check variable: x/
LONG ok;

/* We need dos library V37 or higher: x/
if (DOSBase->dl_1lib.lib_Version < 37)
{
/+ The user has a dos library which is too old! «*/
printf("This program needs dos library V37 or higher!\n");

/+ Exit with an error code: */
exit (20);

/+ This program needs one arguement: «/
/+ (a file, directory or volume name) =/
if(argc !'= 2)
{
/* Wrong number of arguments! x/
printf("Error! Wrong number of arguments!\n");
printf("You must enter a file, directory or volume name.\n");
printf("Example2 Name/A\n"); /+ Simple template x*/

Sourcecode: Example2.c

/* Exit with an error code: =/
exit (21);

/= 1. Try to lock the object: (Shared access is enough.) =«/
my_lock = Lock(argv[1], SHARED_LOCK);

/% Could we lock the object? =*/
if('my_lock)
{
/+ Problems! Inform the user: */
printf ("Could not lock the object!\n");

/+ Exit with an error code: */
exit (22);

/* 2. Create a FileInfoBlock structure with help of the */
/+ new AllocDosObject () function. Note that this function */
/* needs dos library V37 or higher! Note also that anything =/
/+ we allocate with this function must be deallocated with «*/
/* help of the FreeDosObject () function! */
/* (Type FileInfoBlock structure and no Tags.) */
my_fib = AllocDosObject (DOS_FIB, NULL);

/* Check if we have allocated the memory successfully: =*/
if('my_fib)
{

/+ Problems! Inform the user: */

printf ("Could not allocate the FileInfoBlock!\n");

/* Unlock the object: */
UnLock (my_lock);

/+* Exit with an error code: */
exit (23);
}i

/+ 3. Get some information about the object we have locked: =/
ok = Examine (my_lock, my_fib);

/* Any problems? x/
if(ok)
{
/+ Problems! Inform the user: */
printf ("Could not examine the object!\n");

/* Deallocate the FileInfoBlock structure wich we have =/
/+ created with help of the AllocDosObject () function: =/
FreeDosObject (DOS_FIB, my_fib);

Sourcecode: Example2.c

/+ Unlock the object: «/
UnLock (my_lock);

/* Exit with an error code: =/
exit (24);

/* 4. You may now examine the FileInfoBlock structure! =/
printf ("Name: $s\n", my_fib->fib_FileName) ;

if(my_fib->fib_DirEntryType < 0)

printf("Type: File\n");
else

printf("Type: Directory or Volume\n");
printf("Size: %d\n", my_fib->fib_Size);
printf("Blocks: $d\n", my_fib->fib_NumBlocks);
printf ("Comment: $s\n",

my_fib->fib_Comment [0] ? my_fib->fib_Comment : "No comment");
printf("Protection bits:\n");
printf(" Delete: %s\n",

my_fib->fib_Protection & FIBF_DELETE ? "On" : "Off");
printf(" Execute: %$s\n",

my_fib->fib_Protection & FIBF_EXECUTE ? "On" : "Off");
printf(" Write: $s\n",

my_fib->fib_Protection & FIBF_WRITE ? "On" : "Off");
printf(" Read: $s\n",

my_fib->fib_Protection & FIBF_READ ? "On" : "Off");
printf(" Archive: %s\n",

my_fib->fib_Protection & FIBF_ARCHIVE ? "On" : "Off");
printf(" Pure: %$s\n",

my_fib->fib_Protection & FIBF_PURE ? "On" : "Off");
printf(" Script: %s\n",

my_fib->fib_Protection & FIBF_SCRIPT ? "On" : "Off");
printf ("Last changed: (Internal datestamp value)\n");
printf(" Days: $d\n", my_fib->fib_Date.ds_Days);
printf(" Minutes: %d\n", my_fib->fib_Date.ds_Minute);
printf(" Ticks: $d\n", my_fib->fib_Date.ds_Tick);

/+ 5. Deallocate the FileInfoBlock structure wich we have x/
/* created with help of the AllocDosObject () function: */
/+ (Remember that we must use this function if you */
/+ allocated the object with help of the AllocDosObject () =/
/+ function. The advantage with AllocDosObject () is that «/

Sourcecode: Example2.c

5/5

/* the size of the object can vary betweeen different
/+ releases of the dos library and your program will
/+ still be able to run. Since the size may vary you

/+* must of course use some function which can deallocate

/+ all memory that was allocated, and not just use a
/+ fixed size as we have to do when we use AllocMem/()
/* FreeMem() .)

FreeDosObject (DOS_FIB, my_fib);

/*x 6. Unlock the file: «/
UnLock (my_lock);

/* The End! =/
exit(0);

and

*/
*/
*/
*/
*/
*/
*/

	Sourcecode: Example2.c
	Example2.c

